terça-feira, 31 de maio de 2011

Ben Harper - Diamonds On The Inside .

Benjamin Chase "Ben" Harper (born October 28, 1969) is an American singer-songwriter and musician. Harper plays an eclectic mix of blues, folk, soul, reggae and rock music and is known for his guitar-playing skills, vocals, live performances and activism. Harper's fan base spans several continents.His albums have been commercially successful in North America, Europe and Oceania. Harper is a two-time Grammy Award winner as well, winning awards for Best Pop Instrumental Performance and Best Traditional Soul Gospel Album, in 2005.

Harper was born in Claremont, in California's Inland Empire. His father, Leonard, was of African-American and Cherokee ancestry, and his mother, Ellen Chase-Verdries, is Jewish. His maternal great-grandmother was a Russian-Lithuanian Jew. His parents divorced when he was age five, and he grew up with his mother's family. Harper has two brothers, Joel and Peter.

Harper began playing guitar as a child. His maternal grandparents' music store The Folk Music Center and Museum laid a foundation of folk and blues for the artist, complemented by regular patrons Leonard Cohen, Taj Mahal and David Lindley and quotes of William Shakespeare and Robert Frost made often by his grandfather.

At the age of 12, Harper played his first gig. During the '80s, in his teen years, Harper began to play the slide guitar, mimicking the style of Robert Johnson. Next, Harper refined his style, taking up the Weissenborn.Harper broke out of the Inland Empire after being offered an invitation by Taj Mahal to tour with the artist. The 20 year-old Harper and the blues legend then recorded Follow the Drinking Ghour(d) and toured Hawaii.

In 1992 Harper recorded the LP Pleasure and Pain with Folk multi-instrumentalist Tom Freund. After this limited edition record, Harper secured a record deal with Virgin Records, which released his debut album, Welcome to the Cruel World in 1994. This was followed by Fight For Your Mind in 1995, which became a college radio favorite and included several songs that Harper still plays live regularly. His 1997 album The Will to Live was the first to feature his backup band the Innocent Criminals.

In 1999 at the Santa Barbara Bowl, Harper met Jack Johnson, who was unknown at the time and had not recorded. Harper obtained a demo tape of twelve of Johnson's songs that he forwarded to his producer, J.P. Plunier, with whom Johnson recorded his first album.

Early in Harper's career, his music received more attention in Europe and was widely played in Australia (first on Triple J radio). Harper has made comments on a number of occasions that his career was kicked off in Australia. While he was a well-known and respected figure in the United States, he was a star in countries like Australia, New Zealand, France, Portugal, Germany, Switzerland and the Netherlands, receiving a great deal of airplay and critical acclaim.

 His popularity in Europe is such that he was French Rolling Stone magazine's Artist of the Year (Artiste De L'Année) in 2003, and his Australian tour that year for Diamonds on the Inside was highly successful.

In 2002, Harper was one of the featured singers covering Motown hits by Marvin Gaye in the documentary, Standing in the Shadows of Motown (a history of The Funk Brothers). In October 2004, Harper participated in the Vote for Change concert tour organized to benefit Moveon.org and encourage people in the swing states to vote during the 2004 U.S. presidential election. In the same month, Harper contributed a live recording of the song "Oppression" to For The Lady, a benefit album for jailed Nobel Peace Prize winner and Burmese pro-democracy advocate Aung San Suu Kyi.

In 2006, Harper released the double album Both Sides of the Gun which debuted at #7 on the Billboard charts. Though uncredited, he appears briefly in the 2006 David Lynch film Inland Empire, alongside his wife Laura Dern.

After several albums without the Innocent Criminals, Harper reconvened that band for the 2007 album, Lifeline, which was recorded in Paris. Harper also covered John Lennon's "Beautiful Boy" on the benefit CD Instant Karma: The Amnesty International Campaign to Save Darfur. Harper is part of the No Nukes group which is against the expansion of nuclear power.

 In 2007 the group recorded a music video of a new version of the Buffalo Springfield song "For What It's Worth". Harper's collaboration "Boa Sorte/Good Luck" with Brazilian singer Vanessa da Mata peaked at #1 in Brazil and Portugal. In Brazil it also won a highly coveted Prêmio Multishow for "Best Song" in 2008. Also in 2008, Harper participated in the benefit album Songs for Tibet.

While recording Both Sides of the Gun in 2005, Harper met the members who would eventually form his new band, Relentless7, with Texas-based musicians Jason Mozersky (guitar), Jesse Ingalls (bass) and Jordan Richardson (drums).[The album White Lies for Dark Times, credited to Ben Harper and Relentless7, was released on May 4, 2009. On July 12, 2009, the band performed the closing concert of the 30th Montreal International Jazz Fest.

On January 13, 2010, Harper and Relentless7 appeared on the Daily Show with Jon Stewart together with Ringo Starr to perform "Walk With You" and "With a Little Help from My Friends". On January 22, 2010, Harper appeared on the last episode of The Tonight Show with Conan O'Brien with Beck and Billy Gibbons playing a Will Ferrell-led rendition of "Freebird".

On August 27, 2010, it was reported that Ben Harper had formed a band called Fistful of Mercy with Dhani Harrison and Joseph Arthur.Fistful of Mercy released their debut record, As I Call You Down, on October 5, 2010.
On February 23rd, 2011, Ben Harper's official site announced that Virgin Records will be releasing his next album, entitled Give Till It's Gone, on 17th May 2011. It is not clear whether the album is his first solo effort since 2005's Both Sides of the Gun or a continuation of recording with Relenless7.

Harper with now estranged wife, Laura Dern in December 2009
In 1996, Harper married his first wife, Joanna. They had two children, a son and daughter, Charles Joseph and Harris.

On December 23, 2005, Harper married his girlfriend of five years, actress Laura Dern. They have two children together, son Ellery Walker Harper (b. August 21, 2001) and daughter Jaya (b. November 24, 2004).

On October 8, 2010, Harper, having been married for five years, filed for divorce from Dern, citing irreconcilable differences. He is seeking joint custody of their two children, as well as asking for a denial of spousal support for Dern. However, it has been rumoured that both Harper and Dern are considering reconciling .

segunda-feira, 30 de maio de 2011

Washington esta atrasado e mal preparado.

Reza o velho provérbio árabe que os cães ladram e a caravana passa. Os comentários de Barack Obama sobre o conflito israelense-palestino em seus discursos no Departamento de Estado e depois no American Israel Public Affairs Committee (Aipac) na semana retrasada causaram muito estardalhaço em Washington. Mas a sensação que tive estando em Beirute e no Golfo quando eles foram proferidos foi de que eles significaram muito menos para os árabes que em Washington ou Israel. Poucos no mundo árabe e entre palestinos acreditam que os Estados Unidos tenham um papel construtivo a jogar na solução desse conflito. Aliás, ao contrário, eles só conseguiram se tornar um empecilho maior do que antes ao progresso.
Em ambos os discursos o presidente reafirmou uma posição tomada por todos os seus antecessores desde Lyndon Johnson: que os Estados Unidos consideram as fronteiras de 1967 a base para um acordo nos termos da Resolução 242 do Conselho de Segurança. Somente em Israel e no Congresso americano isso é considerado novidade, porque Obama não mencionou a concessão de George W. Bush a Ariel Sharon em 2004: "À luz de novas realidades no terreno, incluindo grandes centros populacionais israelenses já existentes, é irreal esperar que o resultado das negociações finais de status venham a ser um retorno pleno e completo às linhas do armistício de 1949". O discurso no Aipac reprisou essa importante concessão, ainda que numa forma ligeiramente menos completa, referindo-se somente a "novas realidades demográficas no terreno".

Deixando de lado essa provisão, o discurso repetiu cada ponto retórico importante do atual governo israelense:

- Um acordo deve envolver a aceitação palestina de "Israel como um Estado judeu e a pátria do povo judeu", o que significa que o 1,4 milhão de palestinos que viviam dentro de Israel devem permanecer cidadãos de segunda classe, ou pior, e que os palestinos precisam renunciar à ideia de que a totalidade da Palestina seja também sua pátria. A "pátria" dos palestinos seriam os fragmentos da Palestina Obrigatória pré-1948 que puderem ser salvos em negociações com Israel, presumivelmente, em torno de 20% do país.

- As "preocupações básicas de segurança" de Israel (nenhuma menção, é claro, à segurança dos palestinos, que mais precisam dela) devem ser um determinante chave de um acordo. Dada a maneira como são abrangentes e elásticos os requisitos de "segurança" israelense, isso basicamente significa que Israel pode contestar praticamente qualquer aspecto de um acordo com o qual não concorde.

- Ligada à aceitação das necessidades de segurança de Israel está a provisão de que um Estado palestino teria de ser "não militarizado". Como um acordo teria de "prover segurança eficaz de fronteiras", isso presumivelmente significa a aceitação da nova demanda do governo Netanyahu de continuar no controle do vale do Rio Jordão e, portanto, dessas fronteiras do "Estado" palestino, no futuro indefinido.

- Nenhum envolvimento do Hamas no processo, a menos que ele aceite precondições como a renúncia à violência e o reconhecimento de Israel antes das negociações, precondições que, nem seria preciso dizer, não são impostas ao outro lado. Dada a recente reconciliação interpalestina, isso descarta, na verdade, a possibilidade de negociações. No discurso do Aipac, essa condição é declarada de maneira ainda mais vigorosa que antes: a reconciliação interpalestina é descrita como "um enorme obstáculo à paz".

- Terá de haver um novo adiamento (após um adiamento de 20 anos por insistência de Israel, iniciado em Madri em 1991) no tratamento das questões centrais de refugiados e Jerusalém. Isso significa que Israel é livre para continuar a construir na Jerusalém Oriental árabe ocupada, expulsar o máximo possível de sua população palestina, mudar os nomes de lugares, apagar marcos históricos e, enfim, tornar a cidade tão judaica quanto Tunbridge Wells é inglesa.

- Não deverá haver nenhuma "deslegitimação" de Israel (uma adoção americana nova em folha de um termo da direita israelense) via colocação do problema da cidadania palestina na ONU, pois, como o presidente declarou no Aipac, um Estado palestino precisa nascer como resultado de negociações, não de uma resolução da ONU. Os escritores de discurso do presidente aparentemente não se lembraram de que o Estado de Israel nasceu com a Resolução 181 da Assembleia-Geral.

Qualquer governo israelense sensato (hoje em dia, talvez uma contradição nos termos) saltaria sobre isso como uma base para negociação, ou pelo menos como uma oportunidade de fazer os árabes parecerem rejeicionistas que se opõem aos desejos de Washington. Um indício de quanto Israel oscilou para a direita é que essa não foi a reação imediata de Netanyahu. Mas ele chefia um governo de coalizão cujo único denominador comum é um compromisso com a expansão dos assentamentos, manter territórios palestinos ocupados e a oposição a negociações sérias com os palestinos.

A campanha para as eleições presidenciais americanas de 2012 já está em curso. Obama e os democratas já estão em modo defensivo ante os ataques insidiosos de líderes republicanos sobre "ter jogado Israel embaixo do ônibus", "traição à única democracia no Oriente Médio", e assim por diante. A questão israelense-palestina já virou uma bola de futebol, e o adágio americano de que a política cessa à beira d’água (no sentido de que os partidos devem se unir em torno da política externa do país) não se aplica claramente a ela.

Dadas as mudanças revolucionárias em curso no mundo árabe e seu impacto profundo nos palestinos, como pôde ser visto na reconciliação interpalestina e na marcha dos palestinos vindo de cinco direções até as fronteiras de Israel em 15 de maio, os eventos no Oriente Médio de algum modo ultrapassaram o presidente Obama. Não somente porque as mãos deste estão atadas pelo começo da campanha presidencial. Ele também é vítima do mau conselho de veteranos como Dennis Ross, que ajudaram a conduzir governos na direção errada desde Ronald Reagan.

Em vista desses fatores, não surpreende que, no que diz respeito a um verdadeiro processo de paz, Washington esteja atrasado e mal preparado.

Maria Lydia é demitida .

A jornalista Maria Lydia Flandoli foi demitida da TV Gazeta, onde trabalhou por 20 anos. A jornalista, âncora do Jornal da Gazeta, deixa a Gazeta na quarta-feira.
"Seu profissionalismo, talento e liderança colaboraram para expandir e fortalecer nossos princípios editoriais. Agradecemos a sua inesquecível dedicação durante esse período", diz a nota da assessoria da emissora.
Maria Lydia teve passagem ainda pelas rádios Jovem Pan, Record e CBN e TV Record, como comentarista do programa:  Record em Notícias e do Jornal da Record'. Foi  âncora do programa Defenda-se,  o primeiro programa de televisão de defesa do cidadão.
Maria Lydia de conduta profissional e pessoal irrepreensíveis , fará muita falta ao jornalismo sério de visão ampla , uma mulher progressista não presa a dogmas pseudos burgueses , jamais pautou sua carreira de jornalista em serviços a este ou aquele grupo que estivesse no poder ou fora dele , uma das primeiras jornalistas a encarar a causa Palestina pelo angulo e otica do sofrimento humano e da verdade oculta nos fatos, "Segundo a assessoria de imprensa da emissora, o telejornal 'será reformatado e brevemente será levado ao ar em HD'." certamente será substituida por um rostinho bonito e sem conteudo , perde a Tv Gazeta , perde aqueles que buscam a verdade no noticiario da TV.

Founding document of the Popular Front for the Liberation of Palestine.

Founding document of the Popular Front for the Liberation of Palestine - December 1967
People of the Arab nation....
People of Palestine...

Fifty years ago, the masses of our people faced a continuing series of assaults by Zionism and colonialism upon the people of this nation, and our right right to liberty and life. Fifty years later and the global forces of Zionism and imperialism continue concocting plots, attacks and wars in order to establish the idea of an entity - the State of Israel. On each day of this historic era, the masses of people are struggling against each of these schemes. We have seen throughout the years in the life of our Palestinian people, a continuation of this struggle through upheavals and uprisings, crystallizing in the last period in commando work practiced by the vanguards of the people on the ground with full refusal of submission, surrender and compromise, and other serious forms and methods of political action. This advance has also represented the determination of the masses of the Palestinian people to take the initiative to pave a road to full emancipation, which is simultaneously the responsibility of the entire Arab masses.

Our struggling people..

The military defeat suffered by the Arab armies served as the beginning of a new phase of work in which the revolutionary masses must take their responsible leadership role in confronting the forces and weapons of imperialism and Zionism, which history has proved is the most effective weapon to crush all forms of colonial aggression and to give the initiative to the popular masses to formulate the future according to their will and interests. The only weapon left to the masses in order to restore history and progress and truly defeat enemies and potential enemies in the long run is revolutionary violence in confronting Zionist violence and reaction. There is no other option in front of the masses of the Arab nation - they face a fierce enemy who wants them to surrender unconditionally. The hopes and anticipation of the Arab masses have reached a qualitatively new level from before the fifth of June; they are aware of the nature of the stage and the objective conditions have matured to the extent that allows us to raise the slogan of the popular armed struggle and put it into practice until victory in a long and protracted battle, a victory that must be achieved through the will and aspirations of the masses.

The entire masses of our Palestinian people live today for the first time since the catastrophe of 1948 on a completely occupied Palestinian territory, confronting a rapacious enemy face to face, and we now must take up this challenge to its conclusion or we must accept or surrender to the ambitions of the enemy and the daily humiliation of our people and absorbed fortunes of our lives. The displacement and dispersion of the last twenty years have created a circumstance in which we must confront the Zionist invaders; the fate of our people and our cause and every human being in Palestine relies upon our Palestinian determination to fight the invaders in order to preserve our dignity, and our lands and our rights.

Palestinian people displaced in the camps of displacement and isolation ...
Tillers of our inflamed land...
Oh poor, steadfast in our cities and villages, in the camps of misery...

Through your valor and resistance in confronting the enemy, one slogan is paramount and repeated daily - only armed resistance, and there is no life for us on our occupied land except the life of popular armed struggle in the service of our objectives and the daily battle. The armed resistance is the only effective method that must be used by the popular masses in dealing with the Zionist enemy and all of its interests and its presence, the masses are the authority, the guide, and the resistance leadership from which victory will be achieved in the end. It is necessary to recruit the popular masses and mobilize them as active participants and leaders, something that can only be achieved through systematic organization addressing the armed struggle of the forces of the masses, creating a heightened awareness of the full dimensions of the battle and the stages, and continuous recruitment of manpower for the armed organization, building he revolutionary leadership in order to become more able to exercise resistance and continue despite all the difficulties and obstacles. Therefore, in order to unite the forces and energies of the Palestinian masses in the occupied land, we have held a full meeting between the following Palestinian organizations: The Heroes of the Return, the Palestinian Liberation Front squads (Organization of martyr Abdul Latif Shrour - Organization of the martyr Qassam - Organization of the martyr Abdul-Qader Al-Husseini), the National Front for the Liberation of Palestine (Youth Organization for Vengeance), and several other Palestinian groups on the homeland. These organizations have agreed among themselves to unite under the banner of the Popular Front for the Liberation of Palestine, achieving a fateful unity among these forces, realizing that the nature and dimensions of the battle and the hostile forces requires us to cluster all efforts and revolutionary ranks for our long and bitter struggle against our enemies.

The Popular Front for the Liberation of Palestine, iniiated and directed by a core group of revolutionaries, is at the same time open to all forces and Palestinian groups, to meet in a broad national revolutionary front in order to achieve a national unity established between all factions engaged in armed struggle. The unity of all the freedom fighters is real demand for our people, as the battle is long and cruel and rupture is intolerable in the ranks of the national movement, and therefore the Popular Front is dedicated entirely to this requirement, because it has formed on this basis. Today our masses are marching through the doors of armed struggle and we believe that the masses' leadership in the armed struggle, bearing its standard as the only guarantee for the steadfastness of this struggle and its escalation up to the level of the Palestinian revolution, with all of its dimensions and content.

Our fighting people...

The only language that the enemy understands is the language of revolutionary violence. The armed struggle is the main curriculum for our protracted conflict that we are waging against occupation and against attempts to liquidate our struggle through attempts at settlement, which have begun again in some areas of the Arab homeland and impose a totally unacceptable occupation upon some parts of our Arab land. We are fighting against the enemy in every land where the feet of his soldiers march. This is our historical approach - where we are going until we reach the stage where we open a wider front against the enemy and turn our land into a burning hell for the invaders. The crossfire of armed struggle is not known to have limits and the armed resistance should not be confined to the militants, but also embrace all parts and sectors of the Palestinian resistance against the enemy at every level, dealing with the enemy militarily, but also a total boycott of all economic, civil and political institutions of the enemy and a rejection of all ties.

The slogan of our masses must be resistance until victory, rooted in the heart with our feet planted on the ground in deep commitment to our land. Today, the Popular Front is hailing our masses with this call. This is the appeal. We must repeat it every day, through every breakthrough bullet and the fall of each martyr, that the land of Palestine today belongs to all the masses. Every area of our land belongs to our masses who have defended it against the presence of the usurper, every piece of land, every rock and stone, our masses will not abandon one inch of them because they belong to the legions of the poor and hungry and displaced persons. In order to liberate this land, and for our steadfast people, our fighters today fall with their heads lifted. The masses - Oh sons of our heroic people - are the lifebreath of the fighters, and it is the involvement of the masses in the battle that ensures victory in the long run. The popular support for the militants at all levels in every land form the basis for genuine, firm, and escalating struggle and steadfastness, rising until we crush the enemy.

In this war for our occupied land, and the fate of collaborators and traitors and enemies of the people will be the fate of the occupying enemy, crushed in full. The Popular Front for the Liberation of Palestine is determined to reject delay and hesitation in engaging in the struggle in our occupied land and declares its determination to reject humility and humiliation and settlements. We stand today before our masses, our people, promising to provide them with the truth, the whole truth in every respect, regarding our struggles, achievements and obstacles facing our armed action. The truth must be the property of the masses because there is no other force more committed to their own interests. The masses must be fully aware of the achievements and problems of the armed struggle without exaggeration or hype because they are the custodians of the objectives of this struggle and their aspirations, which will be given to this struggle, include every possession, up to their blood. The active members, the fighters on the Palestinian land today pursue a new path of political action and deal with the masses with full openness and truth.

People of the Arab nation ...

This battle is long and harsh, and the armed resistance today is the vanguard of fighting along the steadfast Arab front. Every Arab demands today to providefull support for the march of the armed combat corps at all levels. The Palestinian fighting masses on the occupied land are actors of the Arab revolutionary march against imperialism and its proxy forces. In our response to the Zionist alliance and colonialism, we must make the organic link between the struggle of the Palestinian people and the struggle of the masses of the Arab people, facing the same risks and the same schemes, and therefore the work of the Palestinian armed struggle determines the position of the Arabs who stand by the struggle, against those who stand against it. The struggle of the Palestinian people is linked with the struggle of the forces of revolution and progress in the world, the format of the coalition that we face requires a corresponding governing coalition including all the forces of anti-imperialism in every part of the world.

Our struggling masses everywhere on Palestinian land...
Fellow workers and peasants ..
Oh poor people and refugees ..
Fellow students ..
Clerks and traders...

This is the beginning of a movement of the people flying the flags of sacrifice, steadfastness and challenge. We are on the ground and we promise that armed struggle is not a rosy dream, but more fighting, led by the political mobilization of the masses to defend the defenseless against reprisal and persecution. We are marching each fighting step today, preparing to fight a long, harsh and bitter battle with your leadership and commitment as the true owners of the cause. That battle is not easy nor quick, but it is the battle of destiny and its presence requires our deep commitment, ability to continue, and steadfastness.

Glory to the steadfast of our Arab nation
Glory to the struggle of our people
Long live the unity of our fighters on the land of Palestine

We will surely win

December 11, 1967

SHAI MAGZIMOF dribla Exército para desenvolver aplicativo.

SHAI MAGZIMOF   ao centro.

Quando eu era adolescente, queria ser um hacker no Exército de Israel. Mas, ao começar a trabalhar em uma pequena empresa de tecnologia, a coisa mudou. Decidi que queria ter minha própria companhia quando saísse do colégio. E assim foi.
Completei 18 anos, chamei meu amigo Daniel Gross --que hoje tem 19 anos e é executivo-chefe da Greplin--, e disse a ele que tinha uma ideia: construir uma rede social integrada com comércio eletrônico, algo como Facebook e Amazon juntos.

A ideia era grande --até demais. Mesmo assim, começamos a tocar o projeto, mas foi aí que a história mudou.

Em Israel, existem o serviço militar obrigatório e os programas que preparam você para isso. Quando saímos do colégio, fomos para um desses programas, mas ficávamos o tempo todo nos nossos computadores, trabalhando na nossa ideia.

Depois de pouco mais de dois meses, vimos um anúncio de um programa que ajudava no desenvolvimento de novas ideias e empresas, em San Francisco, nos Estados Unidos. Nos inscrevemos e eles gostaram da gente.

Acabamos convidados para uma entrevista. Viajei 18 horas (de Israel ao Vale do Silício) para participar de um encontro de dez minutos.

Paul Grahm, o fundador da incubadora de projetos de San Francisco, nos entrevistou e fomos aceitos. Lembro bem daquele dia. Eu e o Daniel nos olhávamos e não entendíamos o que havia acontecido. A gente não acreditou até começar a planejar nossa mudança para o Vale do Silício --a incubadora de projetos exige presença em San Francisco por três meses.
Voltamos para Israel, fizemos as malas e, 18 horas de voo depois, estávamos de volta. Eu tinha acabado de completar 19 anos.
Em San Francisco, trabalhávamos no nosso apartamento e nos encontrávamos com um grupo de empresas para discutir o projeto.

Mudamos a ideia várias vezes e trabalhamos duro. Enquanto isso, enviávamos várias cartas para o Exército de Israel, contando nossa história e pedindo para adiar o início do nosso serviço militar.

A resposta sempre era não. Até que, um dia, recebi uma ligação do Exército dizendo que, se eu não voltasse rápido, ia perder meu lugar nas unidades que lidam com computadores. Eu teria que servir em três meses e, para falar a verdade, havíamos tido pouco progresso em San Francisco.

Eu não tinha escolha. Tinha cinco meses de visto válido nos EUA e, se não servisse ao Exército, não poderia renová-lo. O Daniel, por outro lado, é americano. Ele decidiu ficar, eu voltei.
Você pode imaginar a minha frustração. Voltei para Israel com um sentimento de não ter nada. A previsão era a de que eu ficasse no Exército pelos próximos três ou quatro anos. E era isso.

Agora a história se divide em duas. O Daniel construiu a própria empresa nos EUA e já levantou US$ 4,8 milhões. Eu, por outro lado, comecei a fazer uma série de entrevistas de preparação para o Exército, ganhando mais alguns meses antes de servir.

Foi nesse período que tive uma ideia de um aplicativo para Android. E agi rápido. Logo já tinha US$ 85 mil de investimento. Comecei também a adiar minhas entrevistas de preparação, para ter mais tempo. Três meses se tornaram sete, mas havia pouco tempo.

Enviei cartas ao Exército, novamente, falando da ideia e da empresa. No começo, não tive sucesso, mas uma ligação, em novembro de 2010, me deu esperanças. Um representante militar me ligou pedindo detalhes sobre a minha empresa. Conversamos e, dias depois, fui convidado para uma reunião.

No encontro, o oficial me perguntou sobre dinheiro, futuro e quantas pessoas eu contrataria. Falei também sobre como aquela empresa poderia ajudar Israel. Ele me disse que teria que pensar.

Nesse meio tempo, consegui mais três meses --não sei como! Mas, em março de 2011, era a minha hora de ir. Veja minha situação: eu tinha duas pessoas trabalhando para mim e várias reuniões com investidores e parceiros agendadas. E eu ia deixar tudo aquilo em algumas semanas --você não consegue exatamente conciliar o serviço militar com uma empresa.

Comecei a procurar alguém para me substituir e continuei tentando falar com o Exército. Descobri que eles não queriam deixar que eu adiasse porque já tinham dito não para uma pessoa com um caso parecido --justamente o Daniel, meu grande amigo. Disse que meu caso era diferente, que eu ia construir uma empresa em Israel, que aquilo seria bom para o país. Não houve resposta.

Apenas algumas semanas antes de ter que me apresentar oficialmente ao Exército, recebi a esperada carta que dizia que eu poderia adiar meu serviço militar para cuidar da empresa. Ainda vou ter que servir ao Exército algum dia, claro, mas pelo menos tenho tempo para cuidar da Innobell.


PROFISSÃO Desenvolvedor de aplicativos e sites
IDADE 20 anos
CARGO Fundador e executivo-chefe da Innobell
CIDADE Mora em Tel Aviv, em Israel
SITE DA EMPRESA innobell.com

Terraplenagem começa no futuro estádio do Corinthians.

Adiada várias vezes, as obras do futuro estádio do Corinthians começaram finalmente a sair do papel nesta segunda-feira. Os trabalhos foram iniciados com a terraplenagem do terreno conforme já estava previsto.
De acordo com a assessoria de imprensa do clube alvinegro, três caminhões, dois tratores D¨6  e duas escavadeiras, além de 20 funcionários, trabalham no local.
A autorização para o início das obras foi concedida pela Prefeitura de São Paulo na última quarta-feira.
Com o atraso nas obras do futuro estádio, a Fifa excluiu na última sexta-feira a cidade de São Paulo da Copa das Confederações-2013.
O prazo para a nova arena corintiana ficar pronta é de 30 meses. O local é cotado para receber a abertura da Copa do Mundo-2014.


Para o início das obras, o Corinthians informou ainda que a contratação de mão de obra não começará agora, mas que dará preferência para moradores da zona leste de São Paulo.No calculo da Construtora Odebrecht, entre 1.500 e 2.000 funcionários trabalharão durante a obra. As contratações serão feitas depois de um cadastramento ainda a ser divulgado pelo clube e pela construtora. Entretanto, operários que moram nas proximidades do terreno terão preferência para facilitar o transporte.
Neste período inicial, os trabalhadores cumprirão 7h20m diárias de atividades, incluindo os sábados. Com o avanço da obra, a Odebrecht pretende criar grupos noturnos.
- Vamos identificar um local que será feito o cadastramento. Vamos treinar pessoas com um programa da empresa. Conforme aparecer demanda, vamos convidando e fazendo seleção. Temos também profissionais em outras obras que serão deslocados - disse.
Para construir o estádio, o Corinthians conta até agora com R$ 400 milhões do empréstimo do BNDES e R$ 240 milhões dos Certificados de Incentivo ao Desenvolvimento, da Prefeitura de São Paulo.
Para tentar reduzir o preço do  futuro estádio, orçado em cerca de R$ 1,064 bilhão, o presidente corintiano Andres Sanchez pediu a ajuda do ex-presidente da República Luiz Inácio Lula da Silva para pressionar a Odebrecht.
Uma das empresas convidadas pelo Corinthians para refazer o orçamento do  futuro estádio promete construir o estádio por preço muito inferior à última estimativa apresentada pela Odebrecht.
Em nota , a Odebrecht afirma ter fechado com o Corinthians "um acordo para que o clube consultasse outras construtoras, de modo a dar maior transparência ao processo".
Há duas semanas, numa reunião que teve participação de representantes de Corinthians, Ministério do Esporte, governo estadual e Prefeitura de São Paulo, a Odebrecht apresentou uma estimativa de custo da arena.O valor, superior a R$ 1 bilhão, não foi aceito, e os órgãos públicos se recusaram a investir diretamente na obra.
O Corinthians, então, passou a atuar em duas frentes para fazer o preço do estádio "voltar" a R$ 650 milhões.

O presidente do Corinthians, Andrés Sanches, não compareceu ao início das obras, mas, em nota oficial, comemorou o fato. Em nenhum momento, porém, citou o  Estádio do Corinthians como palco da Copa do Mundo de 2014.
"Palavra do Presidente aos corinthianos
É com muita alegria e com muito orgulho que anunciamos o início das obras do Estádio do Corinthians, em Itaquera. O dia 30 de maio de 2011 ficará marcado como o início da realização do sonho de toda uma Nação.
Trata-se de mais uma conquista de toda a torcida Corinthiana. Mais uma conquista nessa vitoriosa história centenária. Essa atual Diretoria sempre elegeu como prioridade o aprimoramento das estruturas físicas do Corinthians. Em primeiro lugar, foi construído o moderno Centro de Treinamento. Depois, era hora, enfim, do Estádio. A empreitada é complexa. As dificuldades são muitas. O trabalho é enorme. E está apenas no começo.
Toda a Diretoria, porém, reconheceu a importância do projeto e tem trabalhado dedicadamente para alcançar pleno êxito. O objetivo é construir uma arena moderna, bonita, que atenda aos interesses de toda a Nação Corinthians, mas de forma responsável, zelando pelas finanças do clube.
Subimos mais um degrau. Ainda faltam muitos. Mas não descansaremos enquanto não chegarmos ao topo da escada, no dia da inauguração do Estádio da República Popular do Corinthians.
Obrigado a todos que contribuíram para chegarmos até aqui.
Parabéns, Corinthians.
Andrés Navarro Sanchez

Nota Oficial - Estádio do Corinthians.
Anseio maior da coletividade Corinthians, a tão desejada casa própria está prestes a ser construída. Chega assim ao seu final feliz o resultado de quase três anos de dedicação desta Administração e de mais dezenas de anos das anteriores, em um trabalho profissional de buscar a melhor solução.

Será assinado hoje um pré-contrato com a Organização Odebrecht para a construção de nosso estádio, em Itaquera, com um valor de referência de R$ 335 milhões, com a capacidade para receber 48 mil pessoas. A adequação desse estádio, para o recente anúncio de que o mesmo servirá para os jogos da Copa de 2014 e para sua abertura, será objeto de novas avaliações entre o Corinthians e a Odebrecht, sempre visando chegar ao melhor resultado.

Realmente, até que a Prefeitura declarasse que não transferiria o estádio do Pacaembu para o setor privado, esta era a prioridade inconteste do Timão: localização privilegiada, abrigo de nossas tradições, casa da Fiel, assumirmos o Paulo Machado de Carvalho era uma implicação lógica e emocional.

Inviabilizada esta opção, a Diretoria colocou-se em busca da melhor alternativa. Mais de 10 localizações foram consideradas e descartadas, por varias razões: falta de transporte publico, congestionamento já existente na região, perspectiva de deterioração do entorno, custo desproporcional da terra, restrições ambientais etc.

Um estudo de demanda, conduzido no primeiro semestre deste ano, revelou uma conclusão nada intuitiva: a perda de arrecadação decorrente de se localizar nosso estádio em Itaquera, em vez do Pacaembu, seria de menos de 20 por cento. Ora, considerando a economia no custo da terra (temos uma concessão válida ainda por mais cerca de 80 anos, de mais de 200 mil metros de terreno), acessibilidade por transporte público já concretizada (estação do metro na frente da área), melhoria planejada do acesso rodoviário (Anel Rodoviário em construção, complementado pela Avenida Jacu Pêssego), topografia propícia a uma construção mais barata e rápida, região prioritária para desenvolvimento ( segundo projeto da própria Cidade),nenhuma outra opção conseguiria suplantá-la econômica e financeiramente.

O estudo de demanda revelava, ademais, que o estádio teria condições de se pagar em menos de três anos, já que a arrecadação total projetada será superior a cem milhões de reais anuais, enquanto o custo total do estádio – dimensionado para até 50 mil espectadores – ficaria perto de trezentos milhões de reais.

Esta conclusão implicou em:

1. O dono de um projeto com esta taxa de retorno não deve procurar sócios, mas sim financiadores, pois ele tem condições de honrar um financiamento e ainda deixar polpuda margem de lucro para reforçar a equipe de futebol e outros projetos prioritários.

2. Ao contrário da maioria dos estádios em analise no Brasil que não teriam condições de se sustentar com a receita própria gerada – e, portanto, precisam de recursos públicos, alocados a fundo perdido, para se viabilizarem– o estádio do Corinthians terá uma rentabilidade única e invejável. Consequentemente, não reivindicamos, não precisamos, não queremos nem aceitaremos que recursos orçamentários públicos sejam consumidos pelo nosso projeto.
Constatada a viabilidade econômica do projeto – comprovação que o valor presente de receitas supera largamente o valor presente dos desembolsos - restava viabilizá-lo financeiramente. Vale dizer, o Corinthians teria que obter um empréstimo que lhe desse fundos durante os quase três anos da construção e que pudesse ser pago em prazo razoável, algo como 10 anos.

É sabido que as melhores linhas de financiamento para projetos de longo prazo encontram-se no BNDES . Empréstimos são concedidos ao setor privado, obedecendo às rígidas disposições do Banco Central e do Tribunal de Contas da União, que garantem a saúde financeira da Instituição. Obviamente, quando maior a robustez patrimonial do tomador do empréstimo, melhor a taxa de juros concedida.
Estas linhas de crédito, entretanto, não estão acessíveis a clubes de futebol, cujo passado de inadimplência e gestão temerária está muito recente na memória de todos. Cabia, então, ao Corinthians superar dois desafios para construir seu estádio:

1. Selecionar uma construtora de primeira linha que pudesse assumir conosco e com o detentor de linhas de financiamento o compromisso de entregar a obra em tempo e a custo pré-determinado, sem sacrifício de qualidade.

2. Encontrar uma grande corporação do setor privado que contraísse o empréstimo no BNDES como garantidor, sem cobrar, em troca, participação nos nossos cobiçados lucros futuros.
Depois de várias consultas a grupos privados, a solução despontou quando a Organização Odebrecht – uma das maiores construtoras do Brasil – aceitou nosso apelo para superar simultaneamente os dois desafios: construir nosso estádio a preço justo e oferecer ao BNDES o peso da sua solidez econômico-financeira, tendo como lastro os direitos sobre a denominação do nosso estádio. A Odebrecht foi a responsável pela conclusão, em tempo recorde, do Estádio Olímpico João Havelange (Engenhão), possibilitando seu uso nos Jogos Pan-Americanos do Rio de Janeiro.

A partir desta concepção, a solução do enigma desenvolveu-se como a prova de um teorema:

1. Um dos mais renomados escritório de arquitetura do País, certamente dos mais experientes em estádios de futebol, foi contratado pelo Corinthians para desenvolver o projeto conceitual do estádio. O Dr. Anibal Coutinho concebeu e detalhou este projeto, aliando funcionalidade e elegância, cumprindo todas as exigências dos manuais da FIFA para se enquadrar como estádio padrão da Copa do Mundo e apto a receber uma final de Taça Libertadores.

2. O escritório alemão Werner Sobek foi também contratado pelo Corinthians para desenvolver o projeto estrutural da cobertura e da fachada. Trata-se do mais avançado centro europeu de soluções arrojadas e econômicas, que aportam modernidade aos estádios do Século XXI.

3. Destes estudos, resultou a concepção física da nossa futura casa e uma primeira estimativa do custo da obra, que se situa entre R$ 320 e 350 milhões, aí incluídos os custos de pré-projeto, gestão e detalhamento.

4. O projeto apresenta as seguintes características:
a. Capacidade total para 48 mil espectadores, sendo 16 mil cadeiras cobertas
b. 225 camarotes
c. 2.100 vagas de estacionamento

Com base neste conjunto de informações, Corinthians e Odebrecht firmarão nesta data um protocolo, estabelecendo que:

- o projeto conceitual já existente será detalhado, transformando-se no Projeto Executivo da obra, depois de ser aprovado pelo Corinthians, antes do final deste ano;

- este Projeto Executivo será submetido ao BNDES, em busca do financiamento desta obra, dentre dos parâmetros já existentes no Banco para projetos semelhantes, sem vantagens ou privilégios. A garantia deste financiamento será responsabilidade da Organização Odebrecht.

- o Corinthians entrega à Odebrecht o direito de usar ou revender a denominação do estádio, reservando-se a escolha de para quem irá este direito, se revendido, e dispondo de até um ano para autorizar a operação de revenda.

- o valor do contrato de denominação do estádio é idêntico ao valor médio estimado para a obra: R$ 335 milhões.

- se a receita auferida pela revenda for maior do que R$ 335 milhões, o valor que exceder ao valor contratado será de propriedade do Corinthians; no caso reverso, o Corinthians cobrirá a diferença com suas receitas próprias, na mesma proporção do repagamento do financiamento concedido pelo BNDES.

- do lado do custo, o Corinthians terá a última palavra nas decisões, no esforço de mantê-lo tão baixo quanto possível, respeitado o padrão fixado no projeto. Para tanto, contratará uma gerenciadora, que acompanhará todos os passos da construção.

- para manter receitas e despesas do novo estádio separadas das já existentes, o Corinthias criará uma companhia exclusivamente para construir e operar o estádio, propriedade integral do Clube. Esta empresa garantirá a integridade dos pagamentos, sem que a Construtora tenha qualquer ingerência ou participação na gestão do estádio.

- o Corinthians antevê, com base nos contatos técnicos previamente estabelecidos com o BNDES, o enquadramento formal do projeto antes de 90 dias e, o início das obras, ainda neste ano. Todos os esforços serão mobilizados para que a inauguração ocorra antes do segundo semestre de 2013, já que o apoio unanime dos governos Federal, do Estado e do Município abreviará os tempos de análise e aprovação pelos órgãos competentes.

- todas as disposições do Protocolo estarão sujeitas à aprovação prévia do Conselho de Orientação e do Conselho Deliberativo, por parte do Corinthians; e do seu Conselho de Administração, por parte da Organização Odebrecht.

Os critérios técnicos impostos no ritual de desenvolvimento deste projeto fizeram com que naturalmente ele esteja sendo cogitado como o da abertura da Copa do Mundo de 2014. Apesar de ter sempre apoiado a solução Morumbi como a mais natural para este uso, o Corinthians se dispõe a ser instrumento da permanência em São Paulo da abertura da Copa, desde que para tanto seu estádio não tenha que receber doações de recursos governamentais nem ser onerado por investimentos ou despesas de manutenção decorrentes do ajuste de seu projeto aos padrões exigidos para a abertura de uma Copa.

Etapa final de um processo conduzido com paciência, sem concessões, obedecendo rigorosamente os ditames e exigências ecológicas, econômicas e financeiras, o Corinthians mais uma vez inova, ao manter sob seu controle todas as decisões e a gestão integral do patrimônio criado. Sem recorrer a favores políticos, nem ceder a pressões de grupos, o Corinthians comemorará seu Centenário abraçado pela sua Fiel, protegido por São Jorge e celebrando a concretização do seu sonho maior: a construção da casa própria.

República Popular do Corinthians, 31 de Agosto de 2010.

Andrés Navarro Sanches

Bem já esta definido , com erros e acertos , agora a luta Irmãos Corinthianos.

domingo, 29 de maio de 2011

Estadio do Corinthians , Hochtief faria quase 3 pelo preço da Odebrecht .

Estadio proposto pela  Construtora alemã Hochtief . Preço estimado  R$ 400.000.000,00 .

A construção do estádio corintiano deverá ultrapassar bastante o valor estimado antes, de R$ 600 milhões,  a Odebrecht  já fala em mais  de R$,00  ,  como a óbra sera feita na correria imagina-se  que vai chegar a R$ 1.500.000.000,00  com toda certeza.
Estadio projetado pela Odebrecht .

 Andres Sanchez, o presidente do Corinthians, afirma apenas que é a Odebrecht, responsável pelas obras para erguer a arena, que dará garantias financeiras para levantar o dinheiro no BNDES.
 O Rosemberg o mesmo do plano cruzado , sempre acaba aprontando na sua arquitetura /engenharia/financeira , .
Toda essa arquitetura /engenharia/financeira  só foi desenvolvida por causa da urgência em iniciar as obras para que o estádio fique pronto a tempo de sediar partidas da Copa no Brasil. E o  Corinthians vai ficar com a divida , engraçado .
Agora , havia a proposta do Bradesco e da construtora alemã Hochtief ,do Banco Banif , apresentada Pelo Dr Manuel da Lupa , que se lastreava por um grupo de investimento Suisso e auditada pela PricewaterhouseCoopers  http://www.pwc.ch/ , éra assinar e pegar as chaves etc .O Estadio teria 55.000 lugares , facilmente adaptavel para 65.000 como exige a FIFA , Andrés e Rosemberg recusarão ,. para que ? , para endividar o Corinthians ? . Para pagar juros ? .  Os  alemães estimavam uma óbra deste porte em R$ 400.000.00,00 , a Odebrecht  jogou o preço  para  alturas inimaginaveis ,  porque ?  , embora  locais diferentes  onde seriam construidos  mas a diferença  seria basicamente a terraplanagem , uma vergonha , jogaram o nome do Corinthians  em assuntos suspeitos , corre-se o risco de São Paulo ficar fóra dos eventos ,  da Copa ,  Porque o  Andres não aceitou a oferta da  Construtora alemã Hochtief  ? , que tem curriculun  , já construiu varios estadios pelo mundo . ,
Agóra vaidade e ciumes em homens é literalmente " FÓDA" , apenas porque foi o conselheiro Edgar Ortiz Patrono  do  projeto  da  Hochtief, o Andrés e Rosemberg recusarão.
Tinha oferta de  construção gratis , depois mudou para uma construção de R$600 milhões , depois encareceu para R$ 1.070  bilhão  , que deve chegar a R$  1.500.000.000,00 bilhão viu , sem contar o que  Estado e Prefeitura vão  gastar  em infra-estrutura  na região , uma loucura que poderia ter sido evitada  e melhor sem gastar  nada.  Até agora  29/05/2011 não iniciaram nada.

sábado, 28 de maio de 2011

Jeannie é um Gênio (867-5309 Jenny).

Jeannie é um Gênio (em inglês, I Dream Of Jeannie) foi uma série de televisão Americana transmitida de 1965 a 1970 e criada pelo escritor Sidney Sheldon. Barbara Eden a protagonista lindissima tinha um fã fanatico , o autor desta musica , 867-5309 éra o telefone dela em San Francisco - CA. Aos 17 anos foi eleita Miss San Francisco , lindissima e sonho de consumo de toda a garotada , como não recebia a atenção que julgava ser merecedor o citado lançou a musica com o numero de telefone dela e fez enorme sucesso.

Tommy Tutone - 867-5309 Jenny Live
First released in the 1982 album "Tommy Tutone 2."
Written by Alex Call and Jim Keller

The telephone number 867-5309 was on eBay to be sold arround 200,000 US Dollars !
Jenny Jenny who can I turn to
you give me something I can hold on to
now you think I'm like the others before
who saw you name and number on the wall
Jenny I got your number
I need to make you mine
Jenny don't change your number
867-5309, 867-5309, 867-5309, 867-5309
Jenny Jenny your the girl for me
you don't know me, but you make me so happy
I tried to call you before but I lost the nerve
I tried my imagination but I was disturbed
Jenny I got your number
I need to make you mine
Jenny don't change your number
867-5309, 867-5309, 867-5309, 867-5309
I got it, I got it, I got your number on the wall
I got it, I got it, for a good time, for a good time call
Jenny don't change your number
I need to make you mine
Jenny I got your number
867-5309, 867-5309, 867-5309, 867-5309
Jenny Jenny who can I turn to (867-5309)
for the price of a dime I can always turn to you.

Quantum Entanglement.


Quantum entanglement is a physical resource, like energy, associated with the peculiar nonclassical correlations that are possible between separated quantum systems. Entanglement can be measured, transformed, and purified. A pair of quantum systems in an entangled state can be used as a quantum information channel to perform computational and cryptographic tasks that are impossible for classical systems. The general study of the information-processing capabilities of quantum systems is the subject of quantum information theory.

1. Quantum Entanglement

In 1935 and 1936, Schrödinger published a two-part article in the Proceedings of the Cambridge Philosophical Society in which he discussed and extended a remarkable argument by Einstein, Podolsky, and Rosen. The Einstein-Podolsky-Rosen (EPR) argument was, in many ways, the culmination of Einstein's critique of the orthodox Copenhagen interpretation of quantum mechanics, and was designed to show that the theory is incomplete. (See The Einstein-Podolsky-Rosen Argument in Quantum Theory and Copenhagen Interpretation of Quantum Mechanics.) In classical mechanics the state of a system is essentially a list of the system's properties — more precisely, it is the specification of a set of parameters from which the list of properties can be reconstructed: the positions and momenta of all the particles comprising the system (or similar parameters in the case of fields).

The dynamics of the theory specifies how properties change in terms of a law of evolution for the state. Pauli characterized this mode of description of physical systems as a ‘detached observer’ idealization. See Pauli's letter to Born in The Born-Einstein Letters (Born, 1992; p. 218). On the Copenhagen interpretation, such a description is not possible for quantum systems. Instead, the quantum state of a system should be understood as a catalogue of what an observer has done to the system and what has been observed, and the import of the state then lies in the probabilities that can be inferred (in terms of the theory) for the outcomes of possible future observations on the system. Einstein rejected this view and proposed a series of arguments to show that the quantum state is simply an incomplete characterization of the system. The missing parameters are sometimes referred to as ‘hidden parameters’ or ‘hidden variables’ (although Einstein did not use this terminology, presumably because he did not want to endorse any particular ‘hidden variable’ theory).

It should not be supposed that Einstein's definition of a complete theory included the requirement that it be deterministic. Rather, he required certain conditions of separability and locality for composite systems consisting of separated component systems: each component system separately should be characterized by its own properties (even if these properties manifest themselves stochastically), and it should be impossible to alter the properties of a distant system instantaneously (or the probabilities of these properties) by acting on a local system. In later analyses — notably in Bell's extension of the EPR argument — it became apparent that these conditions, suitably formulated as probability constraints, are equivalent to the requirement that statistical correlations between separated systems should be reducible to probability distributions over common causes (deterministic or stochastic) in the sense of Reichenbach. (See Bell's Theorem and Reichenbach's Common Cause Principle.)

In the original EPR article, two particles are prepared from a source in a certain quantum state and then move apart. There are ‘matching’ correlations between both the positions of the two particles and their momenta: a measurement of either position or momentum on a particular particle will allow the prediction, with certainty, of the outcome of a position measurement or momentum measurement, respectively, on the other particle.

 These measurements are mutually exclusive: either a position measurement can be performed, or a momentum measurement, but not both simultaneously. Either correlation can be observed, but the subsequent measurement of momentum, say, after establishing a position correlation, will no longer yield any correlation in the momenta of the two particles. It is as if the position measurement disturbs the correlation between the momentum values.

 The puzzle is that the assumption of the completeness of the quantum state of the particle pair is inconsistent with the assignment of labels to the particles separately that could be associated with appropriately correlated values for the outcomes of position and momentum measurements. These labels would be the common causes of the correlations, and would provide an explanation of the correlations in terms of the initial correlations between the properties of the two systems at their source. EPR concluded that the quantum state was incomplete.

Here is how Schrödinger put the puzzle in the first part of his two-part article (Schrödinger, 1935; p. 559):

Yet since I can predict either x1 or p1 without interfering with the system No. 1 and since system No. 1, like a scholar in an examination, cannot possibly know which of the two questions I am going to ask first: it so seems that our scholar is prepared to give the right answer to the first question he is asked, anyhow. Therefore he must know both answers; which is an amazing knowledge; quite irrespective of the fact that after having given his first answer our scholar is invariably so disconcerted or tired out, that all the following answers are ‘wrong.’

What Schrödinger showed was that if two particles are prepared in a quantum state such that there is a matching correlation between two ‘canonically conjugate’ dynamical quantities — quantities like position and momentum whose values suffice to specify all the properties of a classical system — then there are infinitely many dynamical quantities of the two particles for which there exist similar matching correlations: every function of the canonically conjugate pair of the first particle matches with the same function of the canonically conjugate pair of the second particle. Thus (Schrödinger, p. 559) system No. 1 ‘does not only know these two answers but a vast number of others, and that with no mnemotechnical help whatsoever, at least with none that we know of.’

Schrödinger coined the term ‘entanglement’ to describe this peculiar connection between quantum systems (Schrödinger, 1935; p. 555):

When two systems, of which we know the states by their respective representatives, enter into temporary physical interaction due to known forces between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought. By the interaction the two representatives [the quantum states] have become entangled.

He added (Schrödinger, 1935; p. 555):

Another way of expressing the peculiar situation is: the best possible knowledge of a whole does not necessarily include the best possible knowledge of all its parts, even though they may be entirely separate and therefore virtually capable of being ‘best possibly known,’ i.e., of possessing, each of them, a representative of its own. 

The lack of knowledge is by no means due to the interaction being insufficiently known — at least not in the way that it could possibly be known more completely — it is due to the interaction itself.Attention has recently been called to the obvious but very disconcerting fact that even though we restrict the disentangling measurements to one system, the representative obtained for theother system is by no means independent of the particular choice of observations which we select for that purpose and which by the way are entirely arbitrary. It is rather discomforting that the theory should allow a system to be steered or piloted into one or the other type of state at the experimenter's mercy in spite of his having no access to it.

In the second part of the paper, Schrödinger showed that, in general, a sophisticated experimenter can, by a suitable choice of operations carried out on one system, ‘steer’ the second system into any chosen mixture of quantum states. That is, the second system cannot be steered into any particular quantum state at the whim of the experimenter, but the experimenter can constrain the quantum state into which the second system evolves to lie in any chosen set of states, with a probability distribution fixed by the entangled state.

He found this conclusion sufficiently unsettling to suggest that the entanglement between two separating systems would persist only for distances small enough that the time taken by light to travel from one system to the other could be neglected, compared with the characteristic time periods associated with other changes in the composite system. He speculated that for longer distances each of the two systems might in fact be in a state associated with a certain mixture, determined by the precise form of the entangled state.

Most physicists attributed the puzzling features of entangled quantum states to Einstein's inappropriate ‘detached observer’ view of physical theory, and regarded Bohr's reply to the EPR argument (Bohr, 1935) as vindicating the Copenhagen interpretation. This was unfortunate, because the study of entanglement was ignored for thirty years until John Bell's reconsideration and extension of the EPR argument (Bell, 1964).

 Bell looked at entanglement in simpler systems than the EPR case: matching correlations between two-valued dynamical quantities, such as polarization or spin, of two separated systems in an entangled state. What Bell showed was that the statistical correlations between the measurement outcomes of suitably chosen different quantities on the two systems are inconsistent with an inequality derivable from Einstein's separability and locality assumptions — in effect from the assumption that the correlations have a common cause.

Bell's investigation generated an ongoing debate on the foundations of quantum mechanics. One important feature of this debate was confirmation that entanglement can persist over long distances(see Aspect et al.), thus falsifying Schrödinger's supposition of the spontaneous decay of entanglement as two entangled particles separate. But it was not until the 1980s that physicists, computer scientists, and cryptographers began to regard the non-local correlations of entangled quantum states as a new kind of non-classical resource that could be exploited, rather than an embarrassment to be explained away. 

For further discussion of entanglement as a physical resource, including measuring entanglement, and the manipulation and purification of entanglement by local operations, see “The Joy of Entanglement” by Popescu and Rohrlich in Lo, Popescu, and Spiller 1998, or Nielsen and Chuang 2000.

2. Exploiting Entanglement: Quantum Teleportation

Consider again Schrödinger's realization that an entangled state could be used to steer a distant particle into one of a set of states, with a certain probability. In fact, this possibility of ‘remote steering’ is even more dramatic than Schrödinger demonstrated. Suppose Alice and Bob share an entangled state of the sort considered by Bell, say two photons in an entangled state of polarization. That is, Alice has in her possession one of the entangled photons, and Bob the other. 

Suppose that Alice has an additional photon in an unknown state of polarization |u>, where the notation ‘| >’ denotes a quantum state. It is possible for Alice to perform an operation on the two photons in her possession that will transform Bob's photon into one of four states, depending on the four possible (random) outcomes of Alice's operation: either the state |u>, or a state that is related to |u> in a definite way. Alice's operation entangles the two photons in her possession, and disentangles Bob's photon, steering it into a state |u*>. 

After Alice communicates the outcome of her operation to Bob, Bob knows either that |u*> = |u>, or how to transform |u*> to |u> by a local operation. This phenomenon is known as ‘quantum teleportation.’

What is extraordinary about this phenomenon is that Alice and Bob have managed to use their shared entangled state as a quantum communication channel to destroy the state |u> of a photon in Alice's part of the universe and recreate it in Bob's part of the universe. Since the state of a photon requires specifying a direction in space (essentially the value of an angle that can vary continuously), without a shared entangled state Alice would have to convey an infinite amount of classical information to Bob for Bob to be able to reconstruct the state |u> precisely. To see why this is so, consider that the decimal expansion of an angle variable represented by a real number is represented by a potentially infinite sequence of digits between 0 and 9.

The binary expansion is represented by a potentially infinite sequence of 0's and 1's. Ever since Shannon formalized the notion of classical information, the amount of classical information associated with a binary alternative (represented as 0 or 1), where each alternative has equal probability, is measured as one binary digit or ‘bit’. So to specify the value of an arbitrary angle variable requires an infinite number of bits.

To specify the outcome of Alice's operation, which has four possible outcomes with equal probabilities, requires two bits of classical information. Remarkably, Bob can reconstruct the state |u> on the basis of just two bits of classical information communicated by Alice, apparently by exploiting the entangled state as a quantum communication channel to transfer the remaining information. For further discussion of quantum teleportation, see Nielsen and Chuang 2000, or Richard Josza's article “Quantum Information and its Properties” in Lo, Popescu, and Spiller 1998.

3. Quantum Information

Formally, the amount of classical information we gain, on average, when we learn the value of a random variable (or, equivalently, the amount of uncertainty in the value of a random variable before we learn its value) is represented by a quantity called the Shannon entropy, measured in bits (Shannon and Weaver, 1949). A random variable is defined by a probability distribution over a set of values. In the case of a binary random variable, with equal probability for each of the two possibilities, the Shannon entropy is 1 bit, representing maximal uncertainty.

For all other probabilities — intuitively, representing some information about which alternative is more likely — the Shannon entropy is less than 1. For the case of maximal knowledge or zero uncertainty about the alternatives, where the probabilities are 0 and 1, the Shannon entropy is zero. (Note that the term ‘bit’ is used to refer to the basic unit of classical information in terms of Shannon entropy, and to an elementary two-state classical system considered as representing the possible outputs of an elementary classical information source.)

Since information is always embodied in the state of a physical system, we can also think of the Shannon entropy as quantifying the physical resources required to store classical information. Suppose Alice wishes to communicate some classical information to Bob over a classical communication channel such as a telephone line, say an email message.

A relevant question concerns the extent to which the message can be compressed without loss of information, so that Bob can reconstruct the original message accurately from the compressed version. According to Shannon's source coding theorem or noiseless coding theorem (assuming a noiseless telephone line with no loss of information), the minimal physical resource required to represent the message (effectively, a lower bound on the possibility of compression) is given by the Shannon entropy of the source.

What happens if we use the quantum states of physical systems to store information, rather than classical states? It turns out that quantum information is radically different from classical information. The unit of quantum information is the ‘qubit’, representing the amount of quantum information that can be stored in the state of the simplest quantum system, for example, the polarization state of a photon. The term is due to Schumacher (1995), who proved a quantum analogue of Shannon's noiseless coding theorem. (By analogy with the term ‘bit,’ the term ‘qubit’ refers to the basic unit of quantum information in terms of the von Neumann entropy, and to an elementary two-state quantum system considered as representing the possible outputs of an elementary quantum information source.)

As we have seen, an arbitrarily large amount of classical information can be encoded in a qubit. This information can be processed and communicated but, because of the peculiarities of quantum measurement, at most one bit can be accessed! According to a theorem by Holevo, the accessible information in a probability distribution over a set of alternative qubit states is limited by the von Neumann entropy, which is equal to the Shannon entropy only when the states are orthogonal in the space of quantum states, and is otherwise less than the Shannon entropy.

While classical information can be copied or cloned, the quantum ‘no cloning’ theorem (Dieks, 1982; Wootters and Zurek, 1982) asserts the impossibility of cloning an unknown quantum state. To see why, consider how we might construct a classical copying device. A NOT gate is a device that takes a bit as input and produces as output either a 1 if the input is 0, or a 0 if the input is 1. In other words, a NOT gate is a 1-bit gate that flips the input bit.

A controlled-NOT gate, or CNOT gate, takes two bits as inputs, a control bit and a target bit, and flips the target bit if and only if the control bit is 1, while reproducing the control bit. (So there are two inputs, the control and target, and two outputs: the control, and either the target or the flipped target, depending on the value of the control.) A CNOT gate functions as a copying device for the control bit if the target bit is set to 0, because the output of the target bit is then a copy of the control bit (i.e., the input 00 produces output 00, and the input 10 produces output 11).

 Insofar as we can think of a measurement as simply a copying operation, a CNOT gate is the paradigm of a classical measuring device. (Imagine Alice equipped with such a device, with input and output control and target wires, measuring the properties of an unknown classical world. The input control wire is a probe for the presence of absence of a property, represented by a 1 or a 0. The target wire functions as the pointer, which is initially set to 0. The output of the target is a 1 or a 0, depending on the presence or absence of the property.)

Suppose we attempt to use our CNOT gate to copy an unknown qubit state. Since we are now proposing to regard the CNOT gate as a device for processing quantum states, the evolution from input states to output states must be effected by a physical quantum transformation. Now quantum transformations are linear on the linear state space of qubits. Linearity of the state space means that for any two qubit states — call them |0> and |1> — that are orthogonal in the space of qubit states, there are qubit states that are represented by linear superpositions or sums of |0> and |1>, with certain coefficients. Such superpositions — e.g., a superposition with coefficients c0, c1 represented symbolically as c0|0> + c1|1> — are non-orthogonal to |0> and to |1>. 

Linearity of the transformation means that any transformation must take a qubit state represented by the sum of two orthogonal qubits to a new qubit state that is the sum of the transformed orthogonal qubits. If the CNOT gate succeeds in copying two orthogonal qubits, it cannot succeed in copying a linear superposition of these qubits. Since the gate functions linearly, it must instead produce a state that is a linear superposition of the outputs obtained for the two orthogonal qubits. 

That is to say, the output of the gate will be represented by a quantum state that is a sum of two terms, where the first term represents the output of the control and target for the first orthogonal qubit, and the second term represents the output of the control and target for the second orthogonal qubit. This could be expressed as c0|0>|0> + c1|1>|1>. This is an entangled state and not the output that would be required by a successful copying operation, where the control and target each outputs the superposed qubit, expressed as (c0|0> + c1|1>)(c0|0> + c1|1>).

4. Quantum Cryptography

Linearity prevents the possibility of cloning or measuring an unknown quantum state. Similarly, it can be shown that if Alice sends Bob one of two nonorthogonal qubits, Bob can obtain information about which of these qubits was sent only at the expense of disturbing the state. In general, for quantum information there is no information gain without disturbance.

 The impossibility of copying an unknown quantum state, or a state that is known to belong to a set of nonorthogonal states with a certain probability, and the existence of a trade-off relation between information gain and state disturbance, is the basis of the application of quantum information to cryptography. 

There are quantum protocols involving the exchange of classical and quantum information that Alice and Bob can exploit to share a secret random key, which they can then use to communicate privately. (See Lo's article “Quantum Cryptology” in Lo, Popescu, and Spiller, 1998.) Any attempt by an eavesdropper, Eve, to monitor the communication between Alice and Bob will be detectable, in principle, because Eve cannot gain any quantum information without some disturbance to the quantum communication channel. Moreover, the ‘no cloning’ theorem prohibits Eve from copying the quantum communications and processing them off-line, so to speak, after she monitors the classical communication between Alice and Bob.

While the difference between classical and quantum information can be exploited to achieve successful key distribution, there are other cryptographic protocols that are thwarted by quantum entanglement. Bit commitment is a key cryptographic protocol that can be used as a subroutine in a variety of important cryptographic tasks. In a bit commitment protocol, Alice supplies an encoded bit to Bob.

 The information available in the encoding should be insufficient for Bob to ascertain the value of the bit, but sufficient, together with further information supplied by Alice at a subsequent stage when she is supposed to reveal the value of the bit, for Bob to be convinced that the protocol does not allow Alice to cheat by encoding the bit in a way that leaves her free to reveal either 0 or 1 at will.

To illustrate the idea, suppose Alice claims the ability to predict advances or declines in the stock market on a daily basis. To substantiate her claim without revealing valuable information (perhaps to a potential employer, Bob) she suggests the following demonstration: She proposes to record her prediction, before the market opens, by writing a 0 (for ‘decline’) or a 1 (for ‘advance’) on a piece of paper, which she will lock in a safe. The safe will be handed to Bob, but Alice will keep the key. At the end of the day's trading, she will announce the bit she chose and prove that she in fact made the commitment at the earlier time by handing Bob the key.

 Of course, the key-and-safe protocol is not provably secure from cheating by Bob, because there is no principle of classical physics that that prevents Bob from opening the safe and closing it again without leaving any trace. The question is whether there exists a quantum analogue of this procedure that is unconditionally secure: provably secure by the laws of physics against cheating by either Alice or Bob. Bob can cheat if he can obtain some information about Alice's commitment before she reveals it (which would give him an advantage in repetitions of the protocol with Alice). Alice can cheat if she can delay actually making a commitment until the final stage when she is required to reveal her commitment, or if she can change her commitment at the final stage with a very low probability of detection.

It turns out that unconditionally secure two-party bit commitment, based solely on the principles of quantum or classical mechanics (without exploiting special relativistic signalling constraints, or principles of general relativity or thermodynamics) is impossible. See Mayers 1997, Lo and Chau 1997 and Lo's article “Quantum Cryptology” in Lo, Popescu, and Spiller 1998 for further discussion. Note that Kent (1999) has shown that one can implement a secure classical bit commitment protocol by exploiting relativistic signalling constraints in a timed sequence of communications between verifiably separated sites for both Alice and Bob.) Roughly, the impossibility arises because at any step in the protocol where either Alice or Bob is required to make a determinate choice (perform a measurement on a particle in the quantum channel, choose randomly and perhaps conditionally between a set of alternative actions to be implemented on the particle in the quantum channel, etc.), the choice can delayed by entangling one or more ‘ancilla’ particles with the channel particle in an appropriate way.

 By suitable operations on the ancillas, the channel particle can be ‘steered’ so that this cheating strategy is undetectable. In effect, if Bob can obtain no information about the bit in the safe, then entanglement will allow Alice to ‘steer’ the bit to either 0 or 1 at will.

5. Quantum Computation

Quantum information can be processed, but the accessibility of this information is limited by the Holevo bound (mentioned in Section 3). David Deutsch (1985) first showed how to exploit quantum entanglement to perform a computational task that is impossible for a classical computer. Suppose we have a black box or oracle that evaluates a function f. The arguments of f (inputs) are either 0 or 1. The values (outputs) of f (which are also 0 or 1) are either the same for both arguments (in which case f is constant), or different for the two arguments (in which case f is said to be ‘balanced’).

We are interested in determining whether f is constant or balanced. Now, classically, the only way to do this is to run the black box or query the oracle twice, for both arguments 0 and 1, and to pass the values (outputs of f) to a circuit that determines whether they are the same (for ‘constant’) or different (for ‘balanced’). Deutsch showed that if we use quantum states and quantum gates to store and process information, then we can determine whether f is constant or balanced in one evaluation of the function f. The trick is to design the circuit (the sequence of gates) to produce the answer to a global question about the function (‘constant’ or ‘balanced’) in an output qubit register that can then be read out or measured.

Consider again the quantum CNOT gate, with two orthogonal qubits |0> and |1> as possible inputs for the control, and |0> as the input for the target. One can think of the input control and output target qubits, respectively, as the argument and associated value of a function.

 This CNOT function associates the value 0 with the argument 0 and the value 1 with the argument 1. For a linear superposition of the orthogonal qubits with equal coefficients as input to the control, represented as |0> + |1> (ignoring the coefficients, for simplity), and the qubit |0> as the input to the target, the output is the entangled state |0>|0> + |1>|1>, a linear superposition in which the first term represents the argument 0 and associated value (0) of the CNOT function, and the second term represents the argument 1 and associated value (1) of the CNOT function.

The entangled state represents all possible arguments and corresponding values of the function as a linear superposition, but this information is not accessible. What can be shown to be accessible, by a suitable choice of quantum gates, is information about whether or not the function has certain global properties. This information is obtainable without reading out the evaluation of any individual arguments and values. (Indeed, accessing information in the entangled state about a global property of the function will typically require losing access to all information about individual arguments and values.)

The situation is analogous for Deutsch's function f. Here the output of f can be represented as either |0>|0> + |1>|0> or >|0>|1> + |1>|1> (in the ‘constant’ case), or |0>|0> + |1>|1> or |0>|1> + |1>|0> (in the ‘balanced’ case). The two entangled states in the ‘constant’ case are orthogonal in the 4-dimensional two-qubit state space and span a plane. 

Call this the ‘constant’ plane. Similarly, the two entangled states in the ‘balanced’ case span a plane, the ‘balanced’ plane. These planes are orthogonal in the 4-dimensional state space, except for an overlap: a line, representing a (non-entangled) two-qubit state. It is therefore possible to design a measurement to distinguish the two global properties of f, ‘constant’ or ‘balanced,’ with a certain probability (actually, 1/2) of failure, when the measurement yields an outcome corresponding to the overlap state, which is common to the two cases. Nevertheless, only one query of the function is required when the measurement succeeds in identifying the global property. 

With a judicious choice of quantum gates, it is even possible to design a quantum circuit that always succeeds in distinguishing the two cases in one run.

Deutsch's example shows how quantum information, and quantum entanglement, can be exploited to compute a global property of a function in one step that would take two steps classically. 

While Deutsch's problem is rather trivial, there now exist several quantum algorithms with interesting applications, notably Shor's factorization algorithm for factoring large composite integers in polynomial time (with direct application to ‘public key’ cryptography, a widely used classical cryptographic scheme) and Grover's database search algorithm. 

Shor's algorithm achieves an exponential speed-up over any known classical algorithm. For algorithms that are allowed access to oracles (whose internal structure is not considered), the speed-up can be shown to be exponential over any classical algorithm in some cases, e.g., Simon's algorithm. See Nielsen and Chuang 2000, Barenco's article “Quantum Computation: An Introduction” in Lo, Popescu, and Spiller 1998, Bub 2006 (Section 6), as well as the entry on quantum computing.

Note that there is currently no proof that a quantum algorithm can solve an NP-complete problem in polynomial time (the factorization problem is not NP-complete), so the efficiency of quantum computers relative to classical computers might turn out to be illusory. If there is indeed a speed-up, it would seem to be due to the phenomenon of entanglement.

 The amount of information required to describe a general entangled state of n qubits grows exponentially with n. The state space (Hilbert space) has 2n dimensions, so a general entangled state is a superposition of 2n n-qubit states. In classical mechanics there are no entangled states: a general n-bit composite system can be described with just n times the amount of information required to describe a single bit system. 

So the classical simulation of a quantum process would involve an exponential increase in the classical informational resource required to represent the quantum state, as the number of qubits that become entangled in the evolution grows linearly, and there would be a corresponding exponential slowdown in calculating the evolution, compared to the actual quantum computation performed naturally by the system. Nevertheless, there is no consensus in the literature as to what exactly explains the apparent speed-up. For a discussion, see Bub 2007, 2010.

6. Interpretative Remarks

Deutsch (1997) has argued that the exponential speed-up in quantum computation, and in general the way a quantum system processes information, can only be properly understood within the framework of Everett's ‘many-worlds’ interpretation (see Everett's Relative-State Formulation of Quantum Mechanics and Many-Worlds Intepretation of Quantum Mechanics). The idea, roughly, is that an entangled state of the sort that arises in the quantum computation of a function, which represents a linear superposition over all possible arguments and corresponding values of the function, should be understood as something like a massively parallel classical computation, for all possible values of a function, in parallel worlds. For an insightful critique of this idea of ‘quantum parallelism’ as explanatory, see Steane 2003.

An alternative view, not much discussed in the literature in this connection, is the quantum logical approach, which emphasizes the non-Boolean structure of properties of quantum systems. (The properties of a classical system form a Boolean algebra, essentially the abstract characterization of a set-theoretic structure.

 This is reflected in the Boolean character of classical logic, and the Boolean gates in a classical computer.) From this perspective, the picture is entirely different. Rather than ‘computing all values of a function at once,’ a quantum algorithm achieves an exponential speed-up over a classical algorithm by avoiding the computation of any values of the function at all. 

A crucial difference between quantum and classical information is the possibility of selecting an exclusive disjunction, representing a global property of a function, among alternative possible disjunctions — for example, the ‘constant’ disjunction asserting that the value of the function (for both arguments) is either 0 or 1, or the ‘balanced’ disjunction asserting that the value of the function (for both arguments) is either the same as the argument or different from the argument — without determining the truth values of the disjuncts. 

Classically, an exclusive disjunction is true if and only if one of the disjuncts is true. This is is redundant information in a quantum computation but essential information classically: an exclusive classical disjunction is true if and only if one of the disjuncts is true. In effect, Deutsch's quantum circuit achieves its speed-up by exploiting the non-Boolean structure of quantum properties to efficiently distinguish between two disjunctive properties, without determining the truth values of the relevant disjuncts (representing the association of individual arguments with corresponding function values).

The point of the procedure is to avoid the evaluation of the function in the determination of the global property, in the sense of producing a value in the range of the function for a value in its domain, and it is this feature — impossible in the Boolean logic of classical computation — that leads to the speed-up relative to classical algorithms. For some recent work by Giuntini and others on logics associated with quantum gates, see under ‘quantum computational logics’ in the Other Internet Resources. (For quantum logic not specifically in relation to quantum computation, see the entry on quantum logic and quantum probability).

Some researchers in quantum information and quantum computation have argued for an information-theoretic interpretation of quantum mechanics. In his review article on quantum computation, Andrew Steane (1998, p. 119) makes the following remark:

Historically, much of fundamental physics has been concerned with discovering the fundamental particles of nature and the equations which describe their motions and interactions. It now appears that a different programme may be equally important: to discover the ways that nature allows, and prevents, information to be expressed and manipulated, rather than particles to move.
Steane concludes his review with the following radical proposal (1998, p. 171):

To conclude with, I would like to propose a more wide-ranging theoretical task: to arrive at a set of principles like energy and momentum conservation, but which apply to information, and from which much of quantum mechanics could be derived. Two tests of such ideas would be whether the EPR-Bell correlations thus became transparent, and whether they rendered obvious the proper use of terms such as ‘measurement’ and ‘knowledge’.

In line with this proposal, Clifton, Bub, and Halvorson 2003 showed that one can derive the basic kinematic features of a quantum description of physical systems from three fundamental information-theoretic constraints:

‘no signaling,’ i.e., no information should be available in the marginal probabilities of measurement outcomes in one region about alternative choices made by an agent in a separated region
the impossibility of perfectly broadcasting the information contained in an unknown physical state (which, for pure states, amounts to ‘no cloning’)
the impossibility of communicating information so as to implement a bit commitment protocol with unconditional security

The analysis is carried out in an algebraic framework (C*-algebras) which allows a mathematically abstract characterization of a physical theory including, as special cases, all classical mechanical theories of both wave and particle varieties, and all variations on quantum theory, including quantum field theories (plus any hybrids of these theories, such as theories with superselection rules).

 Within this framework, the three information-theoretic constraints are shown to jointly entail three physical conditions that are taken as definitive of what it means to be a quantum theory in the most general sense, specifically that:

the algebras of observables pertaining to distinct physical systems commute (a condition usually called microcausality or kinematic independence)

any individual system's algebra of observables is noncommutative
the physical world is nonlocal, in that spacelike separated systems can occupy entangled states that persist as the systems separate

As pointed out by Barnum, Dahlsten, Leifer, and Toner 2008, in spite of the apparent generality of the Clifton-Bub-Halvorson theorem, C*-algebraic theories in finite dimensions are essentially classical theories or quantum theories with superselection rules. 

Barnum et al. considered a framework of generalized probabilistic theories broad enough to include not only quantum and classical mechanics, but also a wide variety of other ‘superquantum’ theories that can serve as foils, and they proved similar results in this framework; specifically, they showed that for any nonclassical ‘no signaling’ theory that does not permit entanglement between systems, there is a bit-commitment protocol that is exponentially secure in the number of systems involved. See Barrett 2007 and Barnum, Barrett, Leifer, and Wilce 2007 and Barnum, Barrett, Leifer, and Wilce 2006 and 2008 (Other Internet Resources).

 Other researchers have considered the problem of what constraints in the class of ‘no signaling’ theories would characterize quantum theories. See Brassard 2005, van Dam 2005 (Other Internet Resources), Skrzypczyk, Brunner, and Popescu 2009 (Other Internet Resources),

 Pawlowski et al. 2009, Allcock et al. 2009, Navascues and Wunderlich 2009) for interesting results along these lines. For the relation between the generalized probabilistic theory approach of Barnum et al. and the category-theoretic approach of Coecke et al, see Barnum and Wilce 2008a and 2008b (Other Internet Resources). 

See Brukner and Zeilinger 2002 for a different information-theoretic approach to quantum mechanics, and Fuchs 2002 (Other Internet Resources) for a radically Bayesian information-theoretic perspective. For an insightful analysis and critique of the Brukner-Zeilinger position, see Timpson 2003.